## Supercuspidal Representations and Symmetric Spaces

## Jeff Hakim<sup>1</sup>

<sup>1</sup>Department of Mathematics and Statistics American University

Lie Groups and Representation Theory Seminar University of Maryland March 12, 2008

## The groups of interest to us

- G will be a connected reductive group defined over a finite extension F of  $\mathbb{Q}_p$ , for some (finite) odd prime p.
- $\mathbf{H} = \mathbf{G}^{\theta}$  is the group of fixed points of an F-automorphism  $\theta$ of G of order two.
- $H = G^0 = H(F)$ .

A provocative example: Quadratic base change for

- Let E be a quadratic extension of F.
- Let  $G = GL_n(E)$
- If  $g \in G$ , let  $\bar{g} \in G$  be obtained by applying the nontrivial Galois automorphism of E/F to matrix entries.
- Let  $\eta \in G$  be "hermitian" (i.e.,  $t\bar{\eta} = \eta$ ).
- Let  $\theta(g) = \eta^t \bar{g}^{-1} \eta^{-1}$
- Then  $H = G^{\theta}$  is a unitary group in n variables
- Let  $\theta'(g) = \overline{g}$  and  $H' = G^{\theta'} = GL_n(F)$

## Outline

- Overview of results with Fiona Murnaghan
- Harmonic analysis background
- Distinguished tame supercuspidal representations
- Equivalence of tame supercuspidal representations
- 2 Explicit statements
- The equivalence problem
- The main theorem
- Symmetry conditions on data A conjectural symmetry condition
- Evidence for the conjecture

Induced representations

We are interested in harmonic analysis on  $H\backslash G$ .

- But instead of working with  $L^2(H\backslash G)$ , we work with
- There are various notions of "induced representation," with induced from the trivial representation of H.  $C^{\infty}(H\backslash G)$  can be viewed as "the" representation of G each suited to different examples. Both  $L^2(H\backslash G)$  and
- For some applications, such as the Plancherel formula, it is more appropriate to work with  $L^2(H\backslash G)$

Quadratic base change for GL

Let  $\pi$  be an irreducible supercuspidal representation of G.

- π is(H)-distinguished.
- $Hom_H(\pi, 1)$  has dimension one.
- π is a base change lift from H'
- π ≃ π οθ.
- $L_{Asai}(s, \pi)$  has a pole at s = 1/2.

How typical is this for general G and  $\theta$ ?

## What is harmonic analysis?

## ome popular answe

- It's the decomposition of L<sup>2</sup>(G) into irreducible unitary representations of G, where G is a locally compact group like SO(2) (the circle).
- It's the decomposition of L<sup>2</sup>(H\G) into irreducible unitary representations of G, where H\G is a symmetric space like SO(2)\SO(3) (the sphere).
- The group G acts on functions on G by right translations:  $(g \cdot t)(x) = f(xg).$
- The representations that "occur" in the decomposition of  $L^2(H\backslash G)$  are called *H*-distinguished representations of *G*.

## H-distinguished representations

Let  $(\pi, V)$  be an irreducible admissible representation of G.

- $\operatorname{Hom}_G(\pi, C^{\infty}(H\backslash G)) \cong \operatorname{Hom}_H(\pi, 1)$
- ullet If either side of Frobenius Reciprocity is nonzero, we say  $\pi$ is H-distinguished
- The elements of  $\operatorname{Hom}_H(\pi,1)$  are just linear forms  $\lambda:V\to\mathbb{C}$  such that  $\lambda(\pi(h)v)=\lambda(v)$ , for all  $h\in H$  and VEV.

Questions

## supercuspidal representation of G.

Suppose we are given G and  $\theta$  and let  $\pi$  be an irreducible tame

- (Multiplicity One Question) If  $\pi$  is H-distinguished does  $\operatorname{Hom}_{\mathcal{H}}(\pi, 1)$  have dimension one?
- (Liftings) Can the set of distinguished representations be described as the image of a "lifting"?
- (Symmetry conditions) Do the distinguished representations satisfy a symmetry condition?
- (Special values of L-functions) Is there a correlation L-function condition? between distinguishedness (a.k.a, distinction) and an

H-CB

## Reducibility of induced representations

irreducible representation of G via parabolic induction. Then one can consider when a representation of G yields an A given G may embed as a Levi factor in a larger group G.

exactly when it is G<sup>0</sup>-distinguished. approach of Shahidi). In some cases, one can find  $\theta$  so that a representation of G induces an irreducible representations of  $\widetilde{G}$ Murnaghan and Repka studied this (following a general

with reducibility of induced representations). In other cases, it is the opposite (distinguishedness correlates

An unintended consequence of the main result

When do two Yu data  $\Psi_1$  and  $\Psi_2$  yield equivalent representations  $\pi(\Psi_1)$  and  $\pi(\Psi_2)$ ?

- This was a question that resisted straightforward attempts
- It turns out that the solution follows from our general study of the spaces of invariant linear forms mentioned earlier.

equivalence question (continued) The connection between the main result and the

 $\theta(g_1,g_2)=(g_2,g_1)$ . Given G-data  $\Psi_1$  and  $\Psi_2$ , it is easy to see G-distinguished. that  $\pi(\Psi_1) \simeq \pi(\Psi_2)$  if and only if  $\pi(\Psi_1) \times \pi(\Psi_2)^{\sim}$  is View  $G\setminus (G\times G)$  as a symmetric space via the involution

- $\Psi_1 \text{ and } \Psi_2 \text{ yield equivalent representations of } G, \text{ exactly when } \Psi_1 \times \Psi_2 \text{ yields a } G\text{-distinguished representation of } G \times G.$
- The main theorem tells when  $\pi(\Psi_1 imes \widetilde{\Psi}_2)$  is distinguished

The representations of interest to us

Fiona Murnaghan (U of Toronto) and I studied and classified (to some extent) the tame supercuspidal *H*-distinguished representations of G.

- The tame supercuspidal representations of G are precisely the supercuspidal representations constructed by Jiu-Kang
- Yu defines a certain set of parameters and associates to each parameter Ψ an irreducible supercuspidal representation  $\pi(\Psi)$ .

A companion question

Does Yu's construction "almost always" yield all of the irreducible supercuspidal representations of G?

- Ju-Lee Kim established an affirmative answer to this
- So our result describes the fibers of  $\Psi \mapsto \pi(\Psi)$  and Kim's result determines the image.

What is a Yu datum? Explicit statements
y conditions on data

A Yu datum (a.k.a., a cuspidal G-datum) is a 4-tuple (a.k.a., a quadruple):  $\Psi = (\hat{\mathbf{G}}, y, \rho, \phi)$ , where

- G = (G0, subgroups (called a twisted Levi sequence).  $\dots$ ,  $\mathbf{G}^d$ ) is a tower  $\mathbf{G}^0 \subset \dots \subset \mathbf{G}^d = \mathbf{G}$  of
- y is a point in the Bruhat-Tits building of G.
- ullet ho is a depth zero representation of  $G^0_{[V]}$ , the isotropy group of the image [y] of y in the reduced building.
- $\phi = (\phi_0, \dots, \phi_d)$ , where  $\phi_i$  is a quasicharacter of  $G^i = \mathbf{G}^i(F)$ .

The flavor of the main result

Under mild conditions, we compute  $\operatorname{Hom}_{\mathcal{H}}(\pi(\Psi), 1)$  (sort of).

- We actually show that  $\operatorname{Hom}_H(\pi(\Psi), 1)$  is equivalent to an analogous object involving "depth zero" things.
- In principle, this might be a reduction from p-adic harmonic analysis to harmonic analysis over finite fields.
- Our results allow one to detect the distinguishedness (a.k.a., distinction) of  $\pi(\Psi)$  from properties of the Yu datum

equivalence question The connection between the main result and the

 $(\mathbf{G}, y, \rho, \vec{\phi})^{\sim} = (\mathbf{G}, y, \tilde{\rho}, \vec{\phi}^{-1}).$ 

STEP 1: (The contragredient of a datum)

 $\pi(\Psi)$  is contragredient to  $\pi(\Psi)$ . Explicitly:

Given a G-datum  $\Psi$ , we define a new datum  $\widetilde{\Psi}$  such that

 STEP 2: (The product of data) Given a  $G_1$ -datum  $\Psi_1$  and a  $G_2$ -datum  $\Psi_2$ , we define a  $\pi(\Psi_1 \times \Psi_2) \simeq \pi(\Psi_1) \times \pi(\Psi_2)$  $(G_1 \times G_2)$ -datum  $\Psi_1 \times \Psi_2$  such that

Ways to alter  $\Psi$  without changing  $\pi(\Psi)$ 

There is a way to alter  $\phi$  without affecting

 $\prod_{i=0}^{}\phi_i|$  (a suitable subgroup of  $G^0$ ).

This type of manipulation is called a refactorization.

- Refactoring doesn't affect π(Ψ).
- ullet To be honest, ho is also involved in the definition of
- Refactorizations are directly related to Roger Howe's his GL<sub>n</sub> construction. refactorizations of the "Howe factorizations" that occur in

# Ways to alter $\Psi$ without changing $\pi(\Psi)$ (continued)

If  $\alpha$  is any *F*-automorphism of **G** and  $\Psi$  is a *G*-datum then there is a natural way to obtain a new *G*-datum  $\Psi^{\alpha}$ .

If  $\alpha=\operatorname{Int}(g)$  is conjugation by an element of  $g\in G$  then we write  $g\cdot \Psi=\Psi^{\alpha}$ .

- $\pi(g \cdot \Psi) \simeq \pi(\Psi)$ .
- We say g · Ψ and Ψ are G-conjugate.

Explicit statements
ry conditions on data

The Main Theorem

 $\langle \Theta, \xi \rangle_G = m_K(\Theta) \sum_{\Theta' \in \Theta^K} \langle \Theta', \xi \rangle_K$ 

- Suppose Ψ is a Yu datum.
- Associated to Ψ is an open, compact-mod-center subgroup  $K(\Psi)$  of G and an irreducible representation  $\kappa(\Psi)$  of  $K(\Psi)$ .
- The representation  $\pi(\Psi)$  is the representation c- $\operatorname{Ind}_{K(\Psi)}^{G}(\kappa(\Psi))$  obtained by compactly-supported induction from  $\kappa(\Psi)$ .

with Fiona number Explicit statements arry conditions on data

The Main Theorem

- $\langle \Theta, \xi \rangle_G = m_K(\Theta) \sum_{\Theta' \in \Theta^K} \langle \Theta', \xi \rangle_K$
- An involution of G is an F-automorphism of G of order two. G acts on the set of involutions by  $g \cdot \theta = \operatorname{Int}(g) \circ \theta \circ \operatorname{Int}(g)^{-1}$
- Θ is a G-orbit of involutions.
- $\Theta^K$  is the set of K-orbits in  $\Theta$

# Explicit answer to the equivalence question

refactorization and G-conjugation. and  $\pi(\Psi_2)$  exactly when they are related by a combination of Two Yu data  $\Psi_1$  and  $\Psi_2$  yield equivalent representations  $\pi(\Psi_1)$ 

- As usual, I am lying.
- ullet One is also allowed to replace ho by an equivalent representation.
- One can also replace y by another point with the same image in the reduced building.

The Main Theorem

 $\langle \Theta, \xi \rangle_G = m_K(\Theta) \sum_{\Theta' \in \Theta^K} \langle \Theta', \xi \rangle_K$ 

- In the above formula, K is any subgroup of G of the form  $K(\Psi)$ , for at least one  $\Psi$ .
- If  $\Psi$  is a G-datum for which  $K(\Psi) = K$ , we say  $\Psi$  is a

The Main Theorem Explicit statements netry conditions on data

 $\langle \Theta, \xi \rangle_G = m_K(\Theta) \sum_{\Theta' \in \Theta^K} \langle \Theta', \xi \rangle_K$ 

- $\langle \Theta, \xi \rangle_G = \dim \operatorname{Hom}_{G^\theta}(\pi(\Psi), 1)$ , for any  $\theta \in \Theta$  and any Ψ ∈ ξ.
- $\langle \Theta', \xi \rangle_K = \dim \operatorname{Hom}_{K^{\theta}}(\kappa(\Psi), 1)$ , for any  $\theta \in \Theta'$  and any
- $m_K(\Theta)$  is the (finite) number of elements in each fiber of the map  $K \setminus G/G^{\theta} \to \Theta^K$  given by  $g \mapsto g \cdot \theta$ , for any  $\theta \in \Theta$ .

## The Main Theorem

explain the symbols in stages. the Main Theorem. I will try to To the left is an artistic rendering of

 $\langle \Theta, \xi \rangle_G = m_K(\Theta) \sum_{\Theta' \in \Theta^K} \langle \Theta', \xi \rangle_K$ 

- The left side of the formula is essentially the dimension of a space  $\text{Hom}_{G^{\theta}}(\pi(\Psi), 1)$ .
- Let me explain in more detail ...

explicit statements

The Main Theorem

 $\langle \Theta, \xi \rangle_G = m_K(\Theta) \sum_{\Theta' \in \Theta^K} \langle \Theta', \xi \rangle_K$ 

- ξ is an equivalence class of (G, K)-data, where K-conjugation (not G-conjugation). equivalence is defined via refactorizations and
- Note: Two (G, K)-data Ψ<sub>1</sub> and Ψ<sub>2</sub> are equivalent exactly when  $\kappa(\Psi_1) \simeq \kappa(\Psi_2)$ .

Explicit statements

The Main Theorem

 $\langle \Theta', \xi \rangle_{\mathcal{K}} = \dim \operatorname{Hom}_{\mathcal{K}^{0,\theta}}(\rho'(\Psi), \eta'(\Psi))$  $\rho'(\Psi) = \rho(\Psi) \otimes \prod (\phi_i | K^0)$ 

 $\eta'(\mathbf{w}) = \prod_{i=0}^{d-1} \left( \chi_i^{\mathcal{M}} \mid K^{0,\theta} \right)$ 

 This stuff involves a depth zero quadratic character n' quasicharacters  $\phi_i$  and a representation  $\rho$ ,

Recall the quadratic base change setup:

- $G = GL_n(E)$ , with E/F quadratic.
- $\theta(g) = \eta^t \bar{g}^{-1} \eta^{-1}$ , where  $t\bar{\eta} = \eta$ , and  $\theta'(g) = \bar{g}$ .
- $H = G^{\theta} = U_n(\eta, E/F), H' = G^{\theta'} = GL_n(F).$

- π is H-distinguished.
- $Hom_H(\pi, 1)$  has dimension one.
- π is a base change lift from H'.

Explicit statements
Symmetry conditions on data

Symmetry versus Distinction:

 $\Theta(\xi) = \tilde{\xi}$ 

Condition 2 implies Condition 1.

 $\theta$ -symmetry

Suppose that in the formula

$$\langle \Theta, \xi \rangle_G = m_K(\Theta) \sum_{\kappa} \langle \Theta', \xi \rangle_K$$

some summand  $(\Theta',\xi)_K$  is nonzero. Then for every  $\theta\in\Theta'$  there exists  $\Psi=(\vec{\mathbf{G}},y,\rho,\vec{\phi})\in\xi$  such that:

- $\theta(\mathbf{G}) = \mathbf{G}$
- $\bullet \ \theta[y] = [y],$
- $\bullet \ \phi \circ \theta = \phi^{-1}.$
- (No condition on  $\rho$ .)

Symmetry conditions on data

Restatement of the symmetry condition:

Let  $\Psi$  be a G-datum in the G-equivalence class  $\xi$ .

- The condition  $\pi(\Psi) \simeq \pi(\Psi) \circ \theta'$  is the same as  $\xi = \theta'(\xi)$ .
- The latter condition only depends on the G-orbit Θ' of θ', since g · θ' = Int(g) ∘ θ' ∘ Int(g)<sup>-1</sup> and inner automorphisms preserve G-equivalence classes of data.
- So we write the symmetry condition as

 $\Theta'(\xi) = \xi$ .

Symmetry conditions on data

Self-contragredient representations:

Let  $G = GL_{2n}$  with  $\theta = Int(1_n \oplus (-1_n))$ .

- Then  $\Theta(\xi) = \xi$ .
- So Condition 1 becomes  $\xi = \tilde{\xi}$ .
- In other words, we are dealing with self-contragredient representations and liftings from classical groups.
- In this case, Condition 1 does not imply Condition 2.

be able to conclude that  $(\Theta, \xi)_G \neq 0$  implies that  $\Theta(\xi) = \tilde{\xi}$ . If we only had the additional condition  $\rho\circ\theta\simeq\tilde{\rho}$  then we would

representation of a finite group of Lie type. It appears that our conjecture may perhaps follow fairly easily from an analogous conjecture over finite fields. Now  $\rho$  is nearly a distinguished representation of a cuspidal

This is the subject of a research project Ryan Vinroot and I have tentatively agreed to pursue.

Symmetry conditions on data

## Another restatement:

- A theorem of Gelfand-Kazhdan says that if  $\tau(g) = {}^tg^{-1}$ then  $\tilde{\pi} \simeq \pi \circ \tau$ .
- Note that  $\tau \circ \theta' = \operatorname{Int}(\eta)^{-1} \circ \theta$ .
- If  $\Theta$  is the *G*-orbit of  $\theta$  then  $\Theta(\xi) = \tau(\Theta'(\xi)) = \tau(\xi) = \tilde{\xi}$ .
- So our symmetry condition can be rewritten as

 $\theta(\xi) = \overline{\xi}$ 

Abelian groups: a heuristic Explicit statements
Symmetry conditions on data

• Let  $\chi: A \to \mathbb{C}^{\times}$  be an irreducible representation of A.

ullet Let lpha be an automorphism of order two of an abelian group

- The analogue of Condition 2 for  $\chi$  and  $\alpha$  is the condition that  $\chi$  is trivial on the group  $A^{\alpha}$  of fixed points of  $\alpha$ .
- This implies  $\chi$  is trivial on the elements of the form  $a\alpha(a)$ , with  $a \in A$ .
- This implies  $\chi \circ \alpha = \chi^{-1}$ , which is the analogue of